
Journal of Mathematical Chemistry Vol. 27, No. 4, 2000

Nonoscillation in closed reversible chemical systems
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For a closed reversible chemical system obeying mass action kinetics, we prove that struc-
turally stable closed orbits do not exist if there are no more reaction steps than reactants. We
derive this using an appropriate Lyapunov function for a special case in which the number of
reaction steps equals the number of reactants and a stationary point is shown to be unique and
asymptotically stable.
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1. Introduction

The dynamic behavior of chemical systems is generally governed by mass action
kinetics. If the reaction steps are known, a corresponding system of ordinary differential
equations for the concentrations of the reactants can be set up to describe the quantitative
and qualitative properties of a given chemical system. To deal with a complicated model
considerable simplifications may be necessary or advisable, e.g., by distinguishing fast
and slow variables, applying the quasi-steady-state assumption and performing asymp-
totic analysis [1–4]. The most conspicuous qualitative feature then to detect is the type
of attractor of a system. Here, stable equilibria and stable closed orbits are the simplest
possibilities, the latter leading to the observation of oscillations. Many investigations
have pursued the aim of finding or ruling out such oscillatory behavior, cf. [5–9] for a
few existence and [10–12] for nonexistence results.

Not very much seems to be known in this respect about closed chemical systems
modeled solely according to mass action kinetics, i.e., without any simplification as
those mentioned above. Simon [13] proved that, in the case of two reactants with any
finite number of reversible reactions, the concentrations of these are bounded, as well
as bounded away from zero, in positive time direction. Tóth [12, theorem 3.2] showed
nonexistence of periodic solutions in a very special case of nonreversible reactions.

In the present work, we propose to study closed reversible chemical systems in
which the number of reaction steps does not exceed the number of reactants. In this situ-
ation, our principal result rules out the possibility of structurally stable closed orbits with
positive concentrations (corollary 2.4). This is a consequence of other results making the
assumption that the balance matrix, i.e., the matrix formed by the differences of the sto-
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ichiometric coefficients, is nonsingular. In that case, there is a unique equilibrium with
positive coordinates, which is shown to be asymptotically stable and structurally stable.
Every orbit is forward bounded and forward bounded away from the origin. There is no
closed orbit that contains a point with all coordinates positive (theorem 2.2). Finally, if
the chemical system has two reactants and reaction steps, then the equilibrium is glob-
ally asymptotically stable (corollary 2.3). All these results rely on a suitable Lyapunov
function.

The terminology generally follows [14]. In particular, a closed orbit is one homeo-
morphic to a circle. We call it structurally stable if every eigenvalue of the linearization
of a Poincaré map at the pertinent fixed point has absolute value different from 1. A sta-
tionary point is structurally stable if all the eigenvalues of the linearization of the vector
field at that point have nonzero real parts.

2. Results

The general type of chemical system considered is a closed one, i.e., with n � 2
internal reactants X1, . . . , Xn, no external reactants, and m � 1 reaction steps with
stoichiometric equations

m1jX1 + · · · +mnjXn
kj←→
k′j

m′1jX1 + · · · +m′njXn, j = 1, . . . , m. (1)

The stoichiometric coefficients mij ,m
′
ij (i = 1, . . . , n; j = 1, . . . , m) are nonnegative

integers. The system is assumed to be reversible, i.e., the forward and reverse rate con-
stants, kj and k′j , respectively, in the j th reaction step are both positive (j = 1, . . . , m).

By the law of mass action in chemical kinetics, the concentrations xi of the reac-
tants Xi , for i = 1, . . . , n, are described by the system of ordinary differential equations

ẋi =
m∑
j=1

kj
(
m′ij −mij

)
x
m1j
1 · · · xmnjn +

m∑
j=1

k′j
(
mij −m′ij

)
x
m′1j
1 · · · xm

′
nj

n , i = 1, . . . , n,

(2)
where differentiation is with respect to time. The natural domain of definition of the
differential system (2) is the nonnegative orthant in Rn, i.e., N := {(x1, . . . , xn) ∈ Rn |
x1 � 0 ∧ · · · ∧ xn � 0}.

The following definition is convenient.

Definition 2.1. The balance matrix of system (2), or (1), is the matrix (aij ) with

aij := m′ij −mij , i = 1, . . . , n, j = 1, . . . , m.

Theorem 2.2. In the chemical system (1) let the number of reactants coincide with the
number of reaction steps, i.e., n = m. Assume that the balance matrix (aij ) is nonsingu-
lar. Then the solution semiflow of system (2) has the following properties:
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(i) The nonnegative orthant N is positively invariant.

(ii) There is a unique equilibrium point p in the (open) positive orthant int(N), the
interior of N.

(iii) p is structurally stable and asymptotically stable.

(iv) A closed orbit does not contain a point of int(N). In particular, there is no closed
orbit in the positive orthant int(N).

(v) Every orbit is forward bounded.

(vi) Every orbit different from {0} is forward bounded away from the origin 0.

(vii) A compact set in a face Fi := {x ∈ N | xi = 0 ∧ xk > 0 for k �= i} of N is not the
ω-limit set of a point in int(N).

Statement (vii) in particular implies that no attracting stationary point or closed
orbit can exist in a face Fi of N . Moreover, by proposition 3.6 below, if a face of N
contains a stationary point or a closed orbit, then the closure of that face is invariant.

For a two-dimensional system, we have:

Corollary 2.3. If n = m = 2 in theorem 2.2, then p is globally asymptotically stable in
int(N).

We cannot prove global asymptotic stability of p for n � 3 in theorem 2.2, nor do
we have a counterexample at this stage. Dropping the hypothesis of n = m makes the
situation much more complicated. We have an example of a two-dimensional system
(i.e., two reactants) with three reaction steps and at least three stationary points (cf. ex-
ample 3.7).

For n � mwe can at least deduce the following from theorem 2.2, by a perturbation
argument.

Corollary 2.4. For n � m, system (2) has no structurally stable closed orbit in int(N).

3. Proofs

First we do not restrict n or m. Using the balance matrix, system (2) reads

ẋi =
m∑
j=1

aij
(
kjx

m1j
1 · · · xmnjn − k′j x

m′1j
1 · · · xm

′
nj

n

)
, i = 1, . . . , n. (3)

Remark 3.1. We have to allow for real mij ,m
′
ij � 0. We understand xa = ea ln x , so

0a = 0 for any a > 0 and 0a = 1 for a = 0, in order to have a continuous vector field
on N . For mij , m′ij ∈ {0} ∪ [1,∞[, the vector field satisfies a local Lipschitz condition.
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Proposition 3.2. Consider a system (3) with mij ,m
′
ij ∈ {0} ∪ [1,∞[, aij = m′ij −mij ,

any n and m. For x ∈ N , xi = 0 implies ẋi � 0. The nonnegative orthant N is
positively invariant, and (3) has a solution semiflow with nonextendible solutions defined
on intervals which are open on the right-hand side.

Proof. Let x ∈ N such that xi = 0 for some i. If aij = 0 then sj , the j th summand
in the expression for ẋi , is zero. Let aij < 0, i.e., m′ij < mij . Then mij > 0, hence,

x
mij
i = 0 for xi = 0, and thus, sj � 0. If aij > 0 then m′ij > 0, x

m′ij
i = 0 for xi = 0 and

sj � 0. Therefore, ẋi � 0 at x. By remark 3.1 the vector field satisfies a local Lipschitz
condition. Now the statements in the last sentence of proposition 3.2 follow from [6,
appendix, lemma A.1]. �

As a special case of proposition 3.2 we have part (i) of theorem 2.2 which is thereby
proved.

To continue the proof of theorem 2.2 we first detect a unique stationary point, then
transform it to the point (1, . . . , 1) and finally apply a particular Lyapunov function.

Proof of 2.2(ii). We now assume n = m.
As det(aij ) �= 0, a point x ∈ int(N) is stationary if and only if

kjx
m1j

1 · · · xmnjn − k′j x
m′1j
1 · · · xm

′
nj

n = 0, j = 1, . . . , n, (4)

or

x
a1j

1 · · · xanjn =
kj

k′j
, j = 1, . . . , n.

Putting κj := ln(kj/k′j ), j = 1, . . . , n, this is equivalent to

n∑
i=1

aij ln xi = κj , j = 1, . . . , n.

Again, as det(aij ) �= 0, this system of linear equations for the ln xi has a unique
solution. Therefore, (3) has a unique stationary point p with positive coordinates, the
solution of

n∑
i=1

aij lnpi = κj , j = 1, . . . , n. (5)

This proves part (ii) of theorem 2.2. �

Proof of 2.2(iii). Let

µj := kjpm1j
1 · · ·pmnjn = k′jpm

′
1j · · ·pm

′
nj

n , j = 1, . . . , n. (6)

(The latter equation holds by (4).)
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Transform system (3), by yi := xi/pi , i = 1, . . . , n, to the form

ẏi = 1

pi

n∑
j=1

aijµj
(
y
m1j
1 · · · ymnjn − ym

′
1j

1 · · · ym
′
nj

n

)
, i = 1, . . . , n. (7)

The domain of this system is still N , the stationary point in int(N) is (1, . . . , 1).
A second coordinate change, zi := ln yi , i = 1, . . . , n, transforms int(N) to Rn,

the stationary point (1, . . . , 1) to the origin, and system (7) to

żi = 1

pi
exp(−zi)

n∑
j=1

aijµj

(
exp

(
n∑
k=1

mkjzk

)
− exp

(
n∑
k=1

m′kj zk

))
, i = 1, . . . , n.

(8)
Introducing a (positive) function ϕ(a, b) by ea−eb = (a−b)ϕ(a, b) and functions

ψj(z) := ϕ(∑n
k=1 mkjzk,

∑n
k=1 m

′
kj zk), j = 1, . . . , n, yields

exp

(
n∑
k=1

mkjzk

)
− exp

(
n∑
k=1

m′kj zk

)
= −ψj(z)

n∑
k=1

akj zk,

where the ψj(z) are positive.
Thus, (8) can be expressed as

żi = − 1

pi
exp(−zi)

n∑
j=1

n∑
k=1

aij akjµjψj(z)zk, i = 1, . . . , n. (9)

The domain of this system is all of Rn, and the only stationary point is the origin.
Now introduce the following Lyapunov function:

V (z) :=
n∑
i=1

pi
(
1+ (zi − 1) exp zi

)
. (10)

1 + (u − 1)eu = ∫ u
0 te

t dt , so V is real analytic and positive definite with respect to
the origin. gradV (z) =∑n

i=1 pizi(exp zi)ei , with the standard basis (e1, . . . , en) of Rn.
Thus, V ∗(z), the time derivative of the composition of V with a solution of (10) at z, is

V ∗(z) = −
n∑
i=1

n∑
j=1

n∑
k=1

ziaij akjµjψj (z)zk.

Define a matrix B(z) = (bij (z)) by

bij (z) :=
√
µjψj(z)aij .

Then

V ∗(z) = −
n∑
i=1

n∑
j=1

n∑
k=1

zibij (z)bkj (z)zk = −zTB(z)BT(z)z = −∥∥BT(z)z
∥∥2
,
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where MT is the transposed of a matrix or vector M and ‖ . . . ‖ is the Euclidean norm.
Now det(aij ) �= 0 implies that B(z) is nonsingular for any z. Therefore, V ∗ is negative
definite with respect to the origin. By Lyapunov’s second method [15, theorem 5.2], the
origin is asymptotically stable in system (9). Hence, the same holds for (1, . . . , 1) in (7)
and for p in (3) or (2). This takes care of the second assertion of (iii).

To compute the linearization L of the vector field (8) at the origin one just has to
collect the linear terms of the appropriate power series in the zi . One has

exp

(
n∑
k=1

mkjzk

)
− exp

(
n∑
k=1

m′kj zk

)
= −

n∑
k=1

akj zk + · · · ,

Lik = − 1

pi

n∑
j=1

µjaij akj , L = −P−1GGT,

where Pik := piδik , Gik := aik√µk.
By a result of Lyapunov (cf. [16, V. 5, theorem 3]), all eigenvalues of L have

negative real parts. Consider the linear differential equation ẋ = Lx for the moment;
let X be the positive definite quadratic form X(x) := xTPx, then X∗(x) = −2xTGGTx

is negative definite, hence, Lyapunov’s theorem confirms the claim above. In particular,
the origin is a structurally stable stationary point of (8), and the proof of part (iii) of
theorem 2.2 is complete. �

Proof of 2.2(iv)–(vi). We now turn to the statements in 2.2(iv)–(vi). By the invariance
principle [15, lemma 5.5], V ∗ would be zero on a closed orbit of (9), contradicting
V ∗ < 0 on Rn\{0}. So int(N) does not contain a closed orbit of (3), i.e., of (2).

To prove the somewhat stronger statement in (iv) transfer V to a Lyapunov function

W(y1, . . . , yn) := V (ln y1, . . . , ln yn)

for (7). Then

W(y) =
n∑
i=1

pi(yi ln yi + 1− yi). (11)

We have u ln u+ 1− u = ∫ u
1 (ln t) dt , which implies limu→0+(u ln u+ 1− u) = 1.

So W has a continuous extension to all of N , also denoted W . In particular, W(0) =∑n
i=1 pi . To prove (iv)–(vi) of 2.2 we have to exploit this extended Lyapunov func-

tion W , defined also on the boundary bd(N) of N , where W ∗ is not defined.

Proposition 3.3. Let ẏ = f (y) be a real analytic differential equation on N such that
N is positively invariant. LetW :N → R be continuous such thatW |int(N) is a Lyapunov
function for ẏ = f (y), with W ∗ < 0 on int(N) except on a finite set of points. Then
W ◦ y is nonincreasing for any solution y of the differential equation.
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Proof. The statement is trivial for a constant solution. Let t0 < t1 and y : [t0, t1] → N

a nonconstant solution. If y(]t0, t1[) ⊂ int(N) then W ◦ y(t1) < W ◦ y(t0) by Lyapunov
theory; for W ◦ y is strictly decreasing on ]t0, t1[, and, hence, on [t0, t1], by W ∗ < 0 on
int(N) outside finitely many points. If y(]t0, t1[) is not contained in int(N) then

{
t ∈ [t0, t1]

∣∣∣ n∏
i=1

yi(t) = 0

}

is either a finite set or the whole interval [t0, t1], because y(t) is a real analytic function
of t . In the first case, y([t0, t1]) ∩ bd(N) is a finite set and W ◦ y is strictly decreasing
by the argument given above. In the other case, y([t0, t1]) ⊂ bd(N). Assume that
W ◦ y(t1) > W ◦ y(t0). Let ε := W ◦ y(t1) − W ◦ y(t0). By continuous dependence
of solutions on initial conditions, one can choose a solution ỹ : [t0, t1] → N such that
ỹ(t0) ∈ int(N), |W ◦ ỹ(t0) − W ◦ y(t0)| < ε/2 and |W ◦ ỹ(t1) − W ◦ y(t1)| < ε/2.
W ◦ ỹ(t1) < W ◦ ỹ(t0) by the first case. Therefore,

ε < W ◦ y(t1)−W ◦ ỹ(t1)+W ◦ ỹ(t0)−W ◦ y(t0) < ε

2
+ ε

2
,

a contradiction. Thus, W ◦ y(t1) � W ◦ y(t0), and the proof of 3.3 is complete. �

Now we are ready to prove 2.2(iv). Proposition (3.3) is applied to the extended
Lyapunov function W for (7), defined on N . The invariance principle still implies that
W is constant on any compact positive limit set [15, proof of lemma 5.5]. A closed
orbit C in N is such a compact positive limit set (e.g., of itself). If C contains a point of
int(N) then W is constant on C; but V ∗ < 0 on Rn\{0} implies W ∗ < 0 on C ∩ int(N),
a contradiction. Passing from system (7) to (3) or (2), proves part (iv) of theorem 2.2.

For a proof of 2.2(v) and (vi), instead of (3) or (2), again we may consider (7), and
show the following.

Proposition 3.4. Assume t �→ y(t) is a nonzero solution of (3.9) in N , defined for all
t ∈ [0, τ [, 0 < τ � ∞, and not extendible on the right. Then there are c1, c2 > 0 such
that c1 <

∑n
i=1 piyi(t) < c2 for all t ∈ [0, τ [.

The set {y ∈ N | c1 <
∑n

i=1 piyi < c2} is bounded and has positive distance from
the origin (the pi being positive by proof of 2.2(ii)). Hence, proposition 3.4 implies (v)
and (vi) of theorem 2.2.

Proof of 3.4. We can once more apply proposition 3.3 to the system (7), with W

the extended Lyapunov function of proof of 2.2(iv)–(vi), defined on N , which satisfies
W ∗ < 0 in int(N)\{(1, . . . , 1)}. Thus, for any increasing sequence tk → τ , the sequence
(W ◦ y(tk))k∈N is nonincreasing.
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If
∑n

i=1 piyi(t) is unbounded above for t → τ , then there is an increasing sequence
tk → τ such that limk→∞

∑n
i=1 piyi(tk) = ∞. So limk→∞ yi0(tk) = ∞ for some i0. The

function u ln u+ 1− u is nonnegative with limu→∞ u ln u+ 1− u = ∞. Therefore,

W ◦ y(tk) � pi0
(
yi0(tk) ln yi0(tk)+ 1− yi0(tk)

)
,

hence, limk→∞W ◦y(tk) = ∞, which is impossible because the sequence is nonincreas-
ing. Thus,

∑n
i=0 piyi(t) < c2 for some c2.

If
∑n

i=1 piyi(t) is not bounded away from 0 for t → τ , then there exists an in-
creasing sequence tk → τ such that limk→∞

∑n
i=1 piyi(tk) = 0, i.e., limk→∞ y(tk) = 0.

We may assume y(tk) �= 0 for all k, as y is not the zero solution, and 0 � yi(tk) < 1 for
all i and k. By continuity, limk→∞W ◦ y(tk) = W(0). The function u ln u + 1 − u is
strictly decreasing on ]0, 1[ with limu→0+ u ln u+ 1 − u = 1. So W has a strict relative
maximum at the origin. Thus, W ◦ y(tk) < W(0). But (W ◦ y(tk))k∈N is nonincreasing,
a contradiction, and we conclude

∑n
i=1 piyi(t) > c1 for some positive c1. �

As a preparation for the proof of 2.2(vii) we provide the following two simple
propositions.

Proposition 3.5. Let q ∈ bd(N) and i ∈ {1, . . . , n} such that qi = 0, qk > 0 for k �= i.
Let aij �= 0 for at least one j ∈ {1, . . . , m}. Then q has a neighborhood U in N such
that for system (2.2) or (3.1), ẋi > 0 in U ∩ int(N).

Proof. If j is such that aij = 0 then the j th summand of ẋi in (3) is zero. So let j be
any index such that aij �= 0.

Case 1. aij > 0, i.e., mij < m′ij . The j th summand of ẋi is

aij x
mij
i

(
kjx

m1j
1 · · · x0

i · · · xmnjn − k′j x
m′1j
1 · · · xaiji · · · x

m′nj
n

)
which is positive for x sufficiently close to q and xi positive, because then x0

i = 1 and
x
aij
i can be chosen arbitrarily close to 0.

Case 2. aij < 0, i.e., mij > m′ij . In this case, the j th summand of ẋi is

aij x
m′ij
i

(
kjx

m1j
1 · · · x−aiji · · · xmnjn − k′jx

m′1j
1 · · · x0

i · · · x
m′nj
n

)
> 0

for x close to q and xi positive.
As at least one aij is nonzero, ẋi is positive at all points x with xi > 0, in a

neighborhood of q. �

Proposition 3.6. Let q ∈ bd(N) and i ∈ {1, . . . , n} such that qi = 0, qk > 0 for k �= i.
For system (2) or (3), let ẋi = 0 at q. Then ẋi = 0 at every x satisfying xi = 0, i.e.,
ẋi = 0 on the closure of the face Fi containing q. In particular, Fi is invariant.

Proof. If aij = 0 for every j then clearly ẋi = 0 anywhere. If j is such that aij �= 0

then mij �= m′ij and at least one of x
mij
i , x

m′ij
i is zero for xi = 0. The nonzero one (if any)
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is of the form x0
i , which is 1 for xi = 0 and makes the j th summand and, hence, all of ẋi

positive for all x with xk > 0 for k �= i. As ẋi = 0 at q, both of x
mij
i , x

m′ij
i must be

zero for xi = 0. Thus, ẋi = 0 for all x with xi = 0. In particular, if the ith coordinate
of a point is zero then the whole orbit of that point lies in the set given by xi = 0, i.e.,
in Fi . �

Proof of 2.2(vii). Fix i ∈ {1, . . . , n}. If aij = 0 for all j then ẋi = 0 for (3) everywhere.
So xi is constant on any solution, which takes care of (vii) in that case. Assume aij �= 0
for at least one j ∈ {1, . . . , m}. Then by proposition 3.5, any compact subset S of Fi has
a neighborhood U inN such that ẋi > 0 in U∩int(N). So, the only way a solution could
approach S would be via Fi itself. But by proposition 3.6 Fi is invariant. Therefore, a
point with ω-limit set S is not in int(N). �

Proof of corollary 2.3. Instead of (2) we study (7), for n = m = 2, with a nonsingular
balance matrix and the stationary point (1, . . . , 1). The positive limit set S of an arbi-
trary point in int(N) is forward bounded, and forward bounded away from 0, by 2.2(v)
and (vi). So S is a connected compact nonempty invariant set in N [17, chapter 16, theo-
rem 1.1 and proof], not containing the origin, on which the extended Lyapunov function
W of proof of 2.2(iv)–(vi) is constant. As W ∗ < 0 on int(N)\{(1, . . . , 1)}, the set S
equals {(1, . . . , 1)} or is contained in one of the open axes. But the latter is excluded
by 2.2(vii). Therefore, S = {(1, . . . , 1)}. Together with 2.2(iii) this shows that the
stationary point is globally asymptotically stable in int(N). �

Proof of corollary 2.4. Consider system (2), or equivalently, (3), under the hypothesis
n � m. Assume the existence of a structurally stable closed orbit C in int(N). If n > m

we can add n−m trivial reaction steps in (1), which amounts to adding n−m columns of
zeros to the matrices (mij ), (m′ij ), (aij ) and does not change the solutions of (2) and (3).
So we still have C as a structurally stable closed orbit in int(N), but the balance matrix
now has square form. By an appropriate small perturbation of the mij ,m

′
ij as nonnega-

tive real numbers, all mij ,m
′
ij become positive; a subsequent even smaller perturbation

makes the balance matrix nonsingular, while the mij ,m
′
ij stay positive. Choosing these

perturbations small enough will keep the existence of a structurally stable closed orbit
in int(N). Though the mij ,m

′
ij are not necessarily integers any more, the arguments of

proof of 2.2(ii) and (iii) remain valid, and the new system on int(N) has a unique station-
ary point and can be transformed to (8) onRn, with a positive definite Lyapunov function
V satisfying V ∗ < 0 outside the origin, which excludes the existence of any closed orbit.
This leads to a contradiction, so the original system does not have a structurally stable
closed orbit. �

We finally give an example with two reactants and three reaction steps, having at
least three equilibria in the interior of the positive quadrant.
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Example 3.7. The three stoichiometric equations X ↔ Y , X ↔ 2Y , 4X + 2Y ↔
2X + 4Y , with the rate constants ki = 1, k′i = 0.1 for i = 1, 2, 3 lead to the differential
system:

ẋ =−2x + 0.1y + 0.1y2 − 2x4y2 + 0.2x2y4,

ẏ = 3x − 0.1y − 0.2y2 + 2x4y2 − 0.2x2y4.

Adding the two equations leads to the condition x = 0.1y2 for a stationary point, subse-
quent substitution into the first equation gives a polynomial equation P(y) = 0, where
P(y) has alternating signs for y = 0.5, 1.5, 2.5 and 3.5. So, P has at least three real
zeros, and the system has at least three equilibria.

Whether this behavior occurs in cases meaningful from the chemical point of view,
remains to be investigated.
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